Abstract
AbstractAntibodies have been widely used to provide targeting ability and to enhance bioactivity owing to their high specificity, availability, and diversity. Recent advances in biotechnology and nanotechnology permit site-specific engineering of antibodies and their conjugation to the surfaces of nanoparticles (NPs) in various orientations through chemical conjugations and physical adhesions. This study proposes the conjugation of poly(lactic-co-glycolic acid) (PLGA) NPs with antibodies by using two distinct methods, followed by a comparison between the cell-targeting efficiencies of both techniques. Full-length antibodies were conjugated to the PLGA-poly(ethylene glycol)-carboxylic acid (PLGA-PEG-COOH) NPs through the conventional carbodiimide coupling reaction, and f(ab′)2 antibody fragments were conjugated to the PLGA-poly(ethylene glycol)-maleimide(PLGA-PEG-Mal) NPs through interactions between the f(ab′)2 fragment thiol groups and the maleimide located on the nanoparticle surface. The results demonstrate that the PLGA nanoparticles conjugated with the f(ab′)2 antibody fragments had a higher targeting efficiency in vitro and in vivo than that of the PLGA nanoparticles conjugated with the full-length antibodies. The results of this study can be built upon to design a delivery technique for drugs through biocompatible nanoparticles.
Funder
institute for basic science funding
national research foundation of korea
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献