An improved protein lipid overlay assay for studying lipid–protein interactions

Author:

Han XiuliORCID,Yang Yongqing,Zhao Fengyun,Zhang Tianren,Yu Xiang

Abstract

Abstract Background Lipids perform multiple functions in the cell, and lipid–protein interactions play a key role in metabolism. Although various techniques have been developed to study lipid–protein interactions, the interacting protein partners that bind to most lipids remain unknown. The protein lipid overlay (PLO) assay has revealed numerous lipid–protein interactions, but its application suffers from unresolved technical issues. Results Herein, we found that blocking proteins may interfere with interactions between lipids and their binding proteins if a separate blocking step is carried out before the incubation step in the PLO assay. To overcome this, we modified the PLO assay by combining an incubation step alongside the blocking step. Verification experiments included phosphatidylinositol-3-phosphate (PI3P) and its commercially available interacting protein G302, C18:1, C18:2, C18:3 and the Arabidopsis plasma membrane H+-ATPase (PM H+-ATPase) AHA2 C-terminus, phosphatidylglycerol (PG) and AtROP6, and phosphatidylserine (PS) and the AHA2 C-terminus. The lipid–protein binding signal in the classical PLO (CPLO) assay was weak and not reproducible, but the modified PLO (MPLO) assay displayed significantly improved sensitivity and reproducibility. Conclusions This work identified a limitation of the CPLO assay, and both sensitivity and reproducibility were improved in the modified assay, which could prove to be more effective for investigating lipid–protein interactions.

Funder

National Natural Science Foundation of China

Doctoral Initiation Fund of Shandong University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3