A simple plant high-molecular-weight DNA extraction method suitable for single-molecule technologies

Author:

Li Zhigang,Parris Stephen,Saski Christopher A.ORCID

Abstract

Abstract Background High-molecular-weight and pure DNA is crucial for high-quality results from 3rd generation DNA Analyzers and optical mapping technologies. Conventional nuclei isolation methods for preparing high-molecular-weight genomic DNA from plant tissues include the preparation of protoplasts or embedding nuclei in an agarose matrix with subsequent manipulations via electro-elution or pulsed-field gel electrophoresis. Results In this method, plant nuclei are isolated by physically grinding tissues and reconstituting the intact nuclei in a unique Nuclear Isolation Buffer (NIB). The plastid DNAs are released from organelles and eliminated with an osmotic buffer by washing and centrifugation. The purified nuclei are then lysed and further cleaned by organic extraction, and the genomic DNA is precipitated with a high concentration of CTAB. The highly pure, high molecular weight gDNA is extracted from the nuclei, dissolved in a high pH buffer, allowing for stable long-term storage. Conclusions This method is unique and avoids the use of embedding in agarose, which dramatically reduces time (4–8 h versus days), complexity, and materials cost. This procedure can be used on essentially any plant species and tissue stage. Here we describe a case study and a simple method to rapidly prepare high molecular weight gDNA from Upland cotton, blackgrass, and strawberry suitable for single-molecule sequencing.

Funder

USDA/NIFA

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Reference7 articles.

1. Resolving biology to advance human health https://www.10xgenomics.com.

2. Sequence with confidence https://www.pacb.com.

3. Oxford Nanopore https://nanoporetech.com.

4. Bionano Genomics https://bionanogenomics.com.

5. Ohyama K, Pelcher LE, Horn D. A rapid, simple method for nuclei isolation from plant protoplasts. Plant Physiol. 1977;60(2):179–81.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3