Immunoinformatics approach for multi-epitope vaccine design against structural proteins and ORF1a polyprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

Author:

Adam Khalid MohamedORCID

Abstract

Abstract Background The lack of effective treatment against the highly infectious SARS-CoV-2 has aggravated the already catastrophic global health issue. Here, in an attempt to design an efficient vaccine, a thorough immunoinformatics approach was followed to predict the most suitable viral proteins epitopes for building that vaccine. Methods The amino acid sequences of four structural proteins (S, M, N, E) along with one potentially antigenic accessory protein (ORF1a) of SARS-CoV-2 were inspected for the most appropriate epitopes to be used for building the vaccine construct. Several immunoinformatics tools were used to assess the antigenicity (VaxiJen server), immunogenicity (IEDB immunogenicity tool), allergenicity (AlgPred), toxigenicity (ToxinPred server), interferon-gamma inducing capacity (IFNepitope server), and the physicochemical properties of the construct (ProtParam tool). Results The final candidate vaccine construct consisted of 468 amino acids, encompassing 29 epitopes. The CTL epitopes that passed the antigenicity, allergenicity, toxigenicity and immunogenicity assessment were four epitopes from S protein, one from M protein, two from N protein, 12 from the ORF1a polyprotein and none from E protein. While the HTL epitopes that passed the antigenicity, allergenicity, toxigenicity and INF-$$\gamma$$ γ were one from S protein, three from M protein, six from the ORF1a polyprotein and none from N and E proteins. All the vaccine properties and its ability to trigger the humoral and cell-mediated immune response were validated computationally. Molecular modeling, docking to TLR3, simulation, and molecular dynamics were also carried out. Finally, a molecular clone using pET28::mAID expression plasmid vector was prepared. Conclusion The overall results of the study suggest that the final multi-epitope chimeric construct is a potential candidate for an efficient protective vaccine against SARS-CoV-2.

Funder

Deanship of Scientific Research, University of Bisha

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3