Author:
Obayes Hasan R,Alwan Ghadah H,Alobaidy Abdul Hameed MJ,Al-Amiery Ahmed A,Kadhum Abdul Amir H,Mohamad Abu Bakar
Abstract
Abstract
Background
The majority of well-known inhibitors are organic compounds containing multiple bonds and heteroatoms, such as O, N or S, which allow adsorption onto the metal surface. These compounds can adsorb onto the metal surface and block active surface sites, reducing the rate of corrosion.
Results
A comparative theoretical study of three benzimidazole isomers, benzimidazole (BI), 2-methylbenzimidazole (2-CH3-BI), and 2-mercaptobenzimidazole (2-SH-BI), as corrosion inhibitors was performed using density functional theory (DFT) with the B3LYP functional basis set.
Conclusions
Nitro and amino groups were selected for investigation as substituents of the three corrosion inhibitors. Nitration of the corrosion inhibitor molecules led to a decrease in inhibition efficiency, while reduction of the nitro group led to an increase in inhibition efficiency. These aminobenzimidazole isomers represent a significant improvement in the inhibition efficiency of corrosion inhibitor molecules.
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Uhlig HH, Revie RW: Corrosion and Corrosion Control. 1985, New York: John Wiley & Sons, 1-3
2. Sastri VS: Corrosion Inhibitors: principles and applications. 1998, New York: John Wiley & Sons Ltd, 25-237.
3. Duda Y, Govea-Rueda R, Galicia M, Beltran HI, Zamudio-Rivera LS: Corrosion inhibitors: design, performance, and computer simulations. J Phys Chem. 2005, B109: 22674-22684.
4. Gَmez B, Likhanova NV, Dominguez Aguilar MA, Olivares O, Hallen JM, Martinez-Magadلn JM: Theoretical study of a new group of corrosion inhibitors. J Phys Chem A. 2005, 109: 8950-8957. 10.1021/jp052188k.
5. Rodrيguez-Valdez LM, Martيnez-Villafa˜ne A, Glossman-Mitnik D: Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties. J. Mol. Struct.-Theochem. 2005, 713: 65-70. 10.1016/j.theochem.2004.10.036.