Uptake and sorption of aluminium and fluoride by four green algal species

Author:

Pitre Danaé,Boullemant Amiel,Fortin Claude

Abstract

Abstract Background We examined the uptake and sorption of aluminium (Al) and fluoride (F) by green algae under conditions similar to those found in the effluents of the aluminium industry. We took into account the speciation of Al in the medium since Al can form stable complexes with F and these complexes may play a role in the uptake and sorption of Al. We compared the capacity of four species of green algae (i.e. Chlamydomonas reinhardtii, Pseudokirchneriella subcapitata, Chlorella vulgaris, and Scenedesmus obliquus) to accumulate and adsorb Al and F. The selected algae were exposed during 4 days, covering all growth phases of algae, to a synthetic medium containing Al and F at pH 7.0. During this period, dissolved Al as well as cellular growth were followed closely. At the end of the exposure period, the solutions were filtered in order to harvest the algal cells. The cells were then rinsed with enough ethylene diaminetetraacetic acid to remove loosely bound ions from the algal surface, determined from the filtrates. Finally, the filters were digested in order to quantify cellular uptake. Results Little difference in Al removal was observed between species. Aluminium sorption (15%) and uptake (26%) were highest in P. subcapitata, followed by C. reinhardtii (7% and 17% respectively), S. obliquus (13% and 5%), and C. vulgaris (7% and 2%). However, none of these species showed significant uptake or sorption of F. We also studied the influence of pH on the uptake and sorption of Al and F by P. subcapitata. We measured a combined uptake and sorption of Al of 50% at pH 7.5, of 41% at pH 7.0, and of 4% at pH 5.5. Thus, accumulation was reduced with acidification of the medium as expected by the increased competition with protons and possibly by a reduced bioavailability of the Al-F complexes which dominated the solution at low pH. Conclusion Out of the four tested species, P. subcapitata showed the highest sorption of aluminium and fluoride under our test conditions. These results provide key information on the development of an environmental biotechnology which can be applied to industrial effluents.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3