Ubiquitous protein lactylation in health and diseases

Author:

Wang Junyong,Wang Ziyi,Wang Qixu,Li Xiao,Guo YapingORCID

Abstract

AbstractFor decades, lactate has been considered a byproduct of glycolysis. The lactate shuttle hypothesis shifted the lactate paradigm, demonstrating that lactate not only plays important roles in cellular metabolism but also cellular communications, which can transcend compartment barriers and can occur within and among different cells, tissues and organs. Recently, the discovery that lactate can induce a novel post-translational modification, named lysine lactylation (Kla), brings forth a new avenue to study nonmetabolic functions for lactate, which has inspired a ‘gold rush’ of academic and commercial interest. Zhang et al. first showed that Kla is manifested in histones as epigenetic marks, and then mounting evidences demonstrated that Kla also occurs in diverse non-histone proteins. The widespread Kla faithfully orchestrates numerous biological processes, such as transcription, metabolism and inflammatory responses. Notably, dysregulation of Kla touches a myriad of pathological processes. In this review, we comprehensively reviewed and curated the existing literature to retrieve the new identified Kla sites on both histones and non-histone proteins and summarized recent major advances toward its regulatory mechanism. We also thoroughly investigated the function and underlying signaling pathway of Kla and comprehensively summarize how Kla regulates various biological processes in normal physiological states. In addition, we also further highlight the effects of Kla in the development of human diseases including inflammation response, tumorigenesis, cardiovascular and nervous system diseases and other complex diseases, which might potentially contribute to deeply understanding and interpreting the mechanism of its pathogenicity. Graphical Abstract

Funder

The National Natural Science Foundation of China

Scientific and Technical Research and Development Program of Henan

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3