Author:
Takahashi Masaya,Makino Shintaro,Oguma Kyoko,Imai Haruka,Takamizu Ai,Koizumi Akari,Yoshida Koyo
Abstract
Abstract
Background
Preeclampsia (PE) is a hypertensive disorder specific to pregnancy that can cause severe maternal-neonatal complications. The International Society for the Study of Hypertension in Pregnancy revised the PE criteria in 2018; a PE diagnosis can be established in the absence of proteinuria when organ or uteroplacental dysfunction occurs. The initial findings of PE (IFsPE) at the first diagnosis can vary considerably across patients. However, the impacts of different IFsPE on patient prognoses have not been reported. Thus, we investigate the predictors of pregnancy complications and adverse pregnancy outcomes based on IFsPE according to the new criteria.
Methods
This retrospective study included 3729 women who delivered at our hospital between 2015 and 2019. All women were reclassified based on the new PE criteria and divided into three groups based on the IFsPE: Classification 1 (C-1), proteinuria (classical criteria); Classification 2 (C-2), damage to other maternal organs; and Classification 3 (C-3), uteroplacental dysfunction. Pregnancy complications and adverse pregnancy outcomes were assessed and compared among the three groups.
Results
In total, 104 women with PE were included. Of those, 42 (40.4%), 28 (26.9%), and 34 (32.7%) were assigned to C-1, C-2, and C-3 groups, respectively. No significant differences in maternal characteristics were detected among the three groups, except for gestational age at PE diagnosis (C-1, 35.5 ± 3.0 weeks; C-2, 35.2 ± 3.6 weeks; C-3, 31.6 ± 4.6 weeks, p < 0.01). The rates of premature birth at < 37 weeks of gestation, fetal growth restriction (FGR), and neonatal acidosis were significantly higher in the C-3 group compared to the C-1 and C-2 groups. Additionally, the composite adverse pregnancy outcomes of the C-3 group compared with C-1 and C-2 represented a significantly higher number of patients.
Conclusions
PE patients with uteroplacental dysfunction as IFsPE had the most unfavorable prognoses for premature birth, FGR, acidosis, and composite adverse pregnancy outcomes.
Publisher
Springer Science and Business Media LLC
Subject
Obstetrics and Gynecology
Reference19 articles.
1. Carty DM, Delles C, Dominiczak AF. Preeclampsia and future maternal health. J Hypertens. 2010;28(7):1349–55. https://doi.org/10.1097/HJH.0b013e32833a39d0.
2. Whorld Health Organization. The world health report: 2005: make every mother and child count. GenevaWHO2005. Available at: http://www.who.int/whr/2005/whr2005_en.pdf. Accessed November 1, 2020.
3. Aneman I, Pienaar D, Suvakov S, Simic TP, Garovic VD, McClements L. Mechanisms of key innate immune cells in early- and late-onset preeclampsia. Front Immunol. 2020;11:1864.
4. Seki H. Balance of antiangiogenic and angiogenic factors in the context of the etiology of preeclampsia. Acta Obstet Gynecol Scand. 2014;93(10):959–64.
5. Grimes S, Bombay K, Lanes A, Walker M, Corsi DJ. Potential biological therapies for severe preeclampsia: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2019;19(1):163.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献