Evaluating diagnostic accuracy of an RT-PCR test for the detection of SARS-CoV-2 in saliva

Author:

Samsunder Natasha,Sivro Aida,Hassan-Moosa Razia,Lewis Lara,Kara Zahra,Baxter Cheryl,Karim Quarraisha Abdool,Karim Salim Abdool,Kharsany Ayesha B. M.,Naidoo Kogieleum,Ngcapu SinayeORCID

Abstract

Abstract Background and objective Saliva has been proposed as a potential more convenient, cost-effective, and easier sample for diagnosing SARS-CoV-2 infections, but there is limited knowledge of the impact of saliva volumes and stages of infection on its sensitivity and specificity. Methods In this study, we assessed the performance of SARS-CoV-2 testing in 171 saliva samples from 52 mostly mildly symptomatic patients (aged 18 to 70 years) with a positive reference standard result at screening. The samples were collected at different volumes (50, 100, 300, and 500 µl of saliva) and at different stages of the disease (at enrollment, day 7, 14, and 28 post SARS-CoV-2 diagnosis). Imperfect nasopharyngeal (NP) swab nucleic acid amplification testing was used as a reference. We used a logistic regression with generalized estimating equations to estimate sensitivity, specificity, PPV, and NPV, accounting for the correlation between repeated observations. Results The sensitivity and specificity values were consistent across saliva volumes. The sensitivity of saliva samples ranged from 70.2% (95% CI, 49.3–85.0%) for 100 μl to 81.0% (95% CI, 51.9–94.4%) for 300 μl of saliva collected. The specificity values ranged between 75.8% (95% CI, 55.0–88.9%) for 50 μl and 78.8% (95% CI, 63.2–88.9%) for 100 μl saliva compared to NP swab samples. The overall percentage of positive results in NP swabs and saliva specimens remained comparable throughout the study visits. We observed no significant difference in cycle number values between saliva and NP swab specimens, irrespective of saliva volume tested. Conclusions The saliva collection offers a promising approach for population-based testing.

Funder

European and Developing Countries Clinical Trials Partnership

Department of Science and Innovation, South Africa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3