cAMP-stimulated Cl- secretion is increased by glucocorticoids and inhibited by bumetanide in semicircular canal duct epithelium

Author:

Pondugula Satyanarayana R,Kampalli Suresh B,Wu Tao,De Lisle Robert C,Raveendran Nithya N,Harbidge Donald G,Marcus Daniel C

Abstract

Abstract Background The vestibular system controls the ion composition of its luminal fluid through several epithelial cell transport mechanisms under hormonal regulation. The semicircular canal duct (SCCD) epithelium has been shown to secrete Cl- under β2-adrenergic stimulation. In the current study, we sought to determine the ion transporters involved in Cl- secretion and whether secretion is regulated by PKA and glucocorticoids. Results Short circuit current (I sc ) from rat SCCD epithelia demonstrated stimulation by forskolin (EC50: 0.8 μM), 8-Br-cAMP (EC50: 180 μM), 8-pCPT-cAMP (100 μM), IBMX (250 μM), and RO-20-1724 (100 μM). The PKA activator N6-BNZ-cAMP (0.1, 0.3 & 1 mM) also stimulated I sc . Partial inhibition of stimulated I sc individually by bumetanide (10 & 50 μM), and [(dihydroindenyl)oxy]alkanoic acid (DIOA, 100 μM) were additive and complete. Stimulated I sc was also partially inhibited by CFTRinh-172 (5 & 30 μM), flufenamic acid (5 μM) and diphenylamine-2,2-dicarboxylic acid (DPC; 1 mM). Native canals of CFTR+/− mice showed a stimulation of Isc from isoproterenol and forskolin+IBMX but not in the presence of both bumetanide and DIOA, while canals from CFTR−/− mice had no responses. Nonetheless, CFTR−/− mice showed no difference from CFTR+/− mice in their ability to balance (rota-rod). Stimulated I sc was greater after chronic incubation (24 hr) with the glucocorticoids dexamethasone (0.1 & 0.3 μM), prednisolone (0.3, 1 & 3 μM), hydrocortisone (0.01, 0.1 & 1 μM), and corticosterone (0.1 & 1 μM) and mineralocorticoid aldosterone (1 μM). Steroid action was blocked by mifepristone but not by spironolactone, indicating all the steroids activated the glucocorticoid, but not mineralocorticoid, receptor. Expression of transcripts for CFTR; for KCC1, KCC3a, KCC3b and KCC4, but not KCC2; for NKCC1 but not NKCC2 and for WNK1 but only very low WNK4 was determined. Conclusions These results are consistent with a model of Cl- secretion whereby Cl- is taken up across the basolateral membrane by a Na+-K+-2Cl- cotransporter (NKCC) and potentially another transporter, is secreted across the apical membrane via a Cl- channel, likely CFTR, and demonstrate the regulation of Cl- secretion by protein kinase A and glucocorticoids.

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Physiology,General Medicine

Reference66 articles.

1. Marcus DC, Acoustic Transduction: Acoustic Transduction. San Diego: Academic Press: Essentials of Membrane Biophysics. Edited by Sperelakis N; 2012:649-668.

2. Marcus DC, Wangemann P, In The Oxford Handbook of Auditory Science: Inner ear fluid homeostasis. Oxford: Oxford University Press: The Ear. Edited by Fuchs PA; 2010:213-230.

3. Marcus DC, Wangemann P, In Physiology and Pathology of Chloride Transporters and Channels in the Nervous System--From molecules to diseases: Cochlear and Vestibular Function and Dysfunction. New York: Elsevier: Edited by Alvarez-Leefmans FJ, Delpire E; 2009:425-437.

4. Sunose H, Liu J, Shen Z, Marcus DC: cAMP increases apical I sK channel current and K + secretion in vestibular dark cells. J Membr Biol 1997, 156: 25-35. 10.1007/s002329900184

5. Sunose H, Liu J, Shen Z, Marcus DC: cAMP increases K + secretion via activation of apical I sK /KvLQT1 channels in strial marginal cells. Hear Res 1997, 114: 107-116. 10.1016/S0378-5955(97)00152-4

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3