RNAi-mediated silencing of Trichinella spiralis serpin-type serine protease inhibitors results in a reduction in larval infectivity

Author:

Yi Nana,Yu Pengcheng,Wu Lijia,Liu Zhaokun,Guan Jingzhe,Liu Chang,Liu Mingxu,Lu YixinORCID

Abstract

AbstractTrichinella spiralisserpin-type serine protease inhibitors (TsSPIs) are expressed in adult worms (AW), newborn larvae (NBL) and muscle larvae (ML) ofT. spiralis, with the ML stage demonstrating the highest expression level. This study aims to determine TsSPI functions in larval viability and invasion of intestinal epithelial cells in vitro, as well as their development, survival, and fecundity in vivo via RNAi. TsSPI-specific siRNAs and dsRNA were transfected into ML by incubation. The silencing effect of TsSPI transcription and expression was determined using qPCR and western blot, respectively. After incubation in 60 ng/μL dsRNA–TsSPI for 3 days, larval TsSPI mRNA and protein expression levels were reduced by 68.7% and 68.4% (P < 0.05), respectively. dsRNA-mediated silencing of TsSPI significantly impacted larval invasion into intestinal epithelial cells in vitro but did not affect the survival rate of larvae. After challenge with dsRNA–TsSPI-treated ML, mice exhibited a 56.0% reduction in intestinal AW burden and 56.9% reduction in ML burden (P < 0.05), but NBL production of female AW remained the same (P > 0.05). Our results revealed that RNAi-mediated silencing of TsSPI expression inT. spiralissignificantly reduced larval infectivity and survival in the host but had no effect on the survival rate and fecundity. Furthermore, TsSPIs have no effect on the growth and reproduction of parasites but may be directly involved in regulating the interaction ofT. spiralisand the host. Therefore, TsSPIs are crucial in the process ofT. spiralislarval invasion and parasite survival in the host.

Funder

National Natural Science Foundation of China

The National Key Research and Development Program of China

Heilongjiang Province Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3