Abstract
AbstractIn Chile, Piscirickettsia salmonis contains two genetically isolated genogroups, LF-89 and EM-90. However, the impact of a potential co-infection with these two variants on Salmonid Rickettsial Septicemia (SRS) in Atlantic salmon (Salmo salar) remains largely unexplored. In our study, we evaluated the effect of P. salmonis LF-89-like and EM-90-like co-infection on post-smolt Atlantic salmon after an intraperitoneal challenge to compare changes in disease dynamics and host immune response. Co-infected fish had a significantly lower survival rate (24.1%) at 21 days post-challenge (dpc), compared with EM-90-like single-infected fish (40.3%). In contrast, all the LF-89-like single-infected fish survived. In addition, co-infected fish presented a higher presence of clinical lesions than any of the single-infected fish. The gene expression of salmon immune-related biomarkers evaluated in the head kidney, spleen, and liver showed that the EM-90-like isolate and the co-infection induced the up-regulation of cytokines (e.g., il-1β, ifnγ, il8, il10), antimicrobial peptides (hepdicin) and pattern recognition receptors (PRRs), such as TLR5s. Furthermore, in serum samples from EM-90-like and co-infected fish, an increase in the total IgM level was observed. Interestingly, specific IgM against P. salmonis showed greater detection of EM-90-like antigens in LF-89-like infected fish serum (cross-reaction). These data provide evidence that P. salmonis LF-89-like and EM-90-like interactions can modulate SRS disease dynamics in Atlantic salmon, causing a synergistic effect that increases the severity of the disease and the mortality rate of the fish. Overall, this study contributes to achieving a better understanding of P. salmonis population dynamics.
Funder
Chilean National Research and Development Agency
Publisher
Springer Science and Business Media LLC
Reference80 articles.
1. Fryer JL, Lannan CN (2007) Family II. Piscirickettsiaceae fam. Nov. Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin, pp 180–199
2. Grant AN, Brown AG, Cox DI, Birkbeck TH, Griffen AA (1996) Rickettsia-like organism in farmed salmon. Vet Rec 138:423
3. Rodger HD, Drinan EM (1993) Observation of a rickettsia-like organism in Atlantic Salmon, Salmo-Salar L, in Ireland. J Fish Dis 16:361–369
4. Olsen AB, Melby HP, Speilberg L, Evensen Ø, Hastein T (1997) Piscirickettsia salmonis infection in Atlantic salmon Salmo salar in Norway—epidemiological, pathological and microbiological findings. Dis Aquat Organ 31:35–48
5. Long A, Jones SRM (2021) Piscirickettsia salmonis shedding and tissue burden, and hematological responses during cohabitation infections in chum Oncorhynchus keta, pink O. gorbuscha and Atlantic salmon Salmo salar. PLoS One 16:e0248098