A multiepitope vaccine encoding four Eimeria epitopes with PLGA nanospheres: a novel vaccine candidate against coccidiosis in laying chickens
-
Published:2022-04-01
Issue:1
Volume:53
Page:
-
ISSN:1297-9716
-
Container-title:Veterinary Research
-
language:en
-
Short-container-title:Vet Res
Author:
Yu ZhengQing, Chen SiYing, Huang JianMei, Ding WenXi, Chen YuFeng, Su JunZhi, Yan RuoFeng, Xu LiXin, Song XiaoKai, Li XiangRuiORCID
Abstract
AbstractWith a worldwide distribution, Eimeria spp. could result in serious economic losses to the poultry industry. Due to drug resistance and residues, there are no ideal drugs and vaccines against Eimeria spp. in food animals. In the current study, a bioinformatics approach was employed to design a multiepitope antigen, named NSLC protein, encoding antigenic epitopes of E. necatrix NA4, E. tenella SAG1, E. acervulina LDH, and E. maxima CDPK. Thereafter, the protective immunity of NSLC protein along with five adjuvants and two nanospheres in laying chickens was evaluated. Based on the humoral immunity, cellular immunity, oocyst burden, and the coefficient of growth, the optimum adjuvant was evaluated. Furthermore, the optimum immune route and dosage were also investigated according to the oocyst burden and coefficient of growth. Accompanied by promoted secretion of antibodies and enhanced CD4+ and CD8+ T lymphocyte proportions, NSLC proteins entrapped in PLGA nanospheres were more effective in stimulating protective immunity than other adjuvants or nanospheres, indicating that PLGA nanospheres were the optimum adjuvant for NSLC protein. In addition, a significantly inhibited oocyst burden and growth coefficient promotion were also observed in animals vaccinated with NSLC proteins entrapped in PLGA nanospheres, indicating that the optimum adjuvant for NSLC proteins was PLGA nanospheres. The results also suggested that the intramucosal route with PLGA nanospheres containing 300 μg of NSLC protein was the most efficient approach to induce protective immunity against the four Eimeria species. Collectively, PLGA nanospheres loaded with NSLC antigens are potential vaccine candidates against avian coccidiosis.
Funder
Joint Research Project between National Natural Science Foundation of China and Pakistan Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary
Reference80 articles.
1. Shirley MW, Smith AL, Tomley FM (2005) The biology of avian Eimeria with an emphasis on their control by vaccination. Adv Parasitol 60:285–330 2. Blake DP, Tomley FM (2014) Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol 30:12–19 3. Imai RK, Barta JR (2019) Distribution and abundance of Eimeria species in commercial turkey flocks across Canada. Can Vet J 60:153–159 4. Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, Dunn M, Hung SS, Kawahara F, Miranda-Saavedra D, Malas TB, Mourier T, Naghra H, Nair M, Otto TD, Rawlings ND, Rivailler P, Sanchez-Flores A, Sanders M, Subramaniam C, Tay YL, Woo Y, Wu X, Barrell B, Dear PH, Doerig C, Gruber A, Ivens AC, Parkinson J, Rajandream MA, Shirley MW, Wan KL, Berriman M, Tomley FM, Pain A (2014) Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res 24:1676–1685 5. Clark EL, Macdonald SE, Thenmozhi V, Kundu K, Garg R, Kumar S, Ayoade S, Fornace KM, Jatau ID, Moftah A, Nolan MJ, Sudhakar NR, Adebambo AO, Lawal IA, Álvarez Zapata R, Awuni JA, Chapman HD, Karimuribo E, Mugasa CM, Namangala B, Rushton J, Suo X, Thangaraj K, Srinivasa Rao AS, Tewari AK, Banerjee PS, Dhinakar Raj G, Raman M, Tomley FM, Blake DP (2016) Cryptic Eimeria genotypes are common across the southern but not northern hemisphere. Int J Parasitol 46:537–544
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|