Abstract
AbstractLeveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and rendering computing codes more readable to non-computer scientists, (iv) to speeding-up decisions and improving accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on a literature review of scientific papers at the interface between AI and AH covering the period 2009–2019, and interviews with French researchers positioned at this interface, the present study explains the main AH areas where various AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodological or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different disciplines in AH towards more transversal and integrative research.
Funder
Agence Nationale de la Recherche
Horizon 2020 Framework Programme
LABEX CEBA
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference98 articles.
1. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL (2018) Artificial intelligence in radiology. Nat Rev Cancer 18:500–510
2. Karczewski KJ, Snyder MP (2018) Integrative omics for health and disease. Nat Rev Genet 19:299–310
3. Murphy KP (2012) Machine learning: a probabilistic perspective. In: Adaptive computation and machine learning series. MIT Press, USA
4. Zhang W, Chien J, Yong J, Kuang R (2017) Network-based machine learning and graph theory algorithms for precision oncology. NPJ Precis Oncol 1:25
5. Saria S, Butte A, Sheikh A (2018) Better medicine through machine learning: what’s real, and what’s artificial? PLoS Med 15:e1002721. https://doi.org/10.1371/journal.pmed.1002721
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献