B-line quantification: comparing learners novice to lung ultrasound assisted by machine artificial intelligence technology to expert review

Author:

Russell Frances M.ORCID,Ehrman Robert R.,Barton Allen,Sarmiento Elisa,Ottenhoff Jakob E.,Nti Benjamin K.

Abstract

Abstract Background The goal of this study was to assess the ability of machine artificial intelligence (AI) to quantitatively assess lung ultrasound (LUS) B-line presence using images obtained by learners novice to LUS in patients with acute heart failure (AHF), compared to expert interpretation. Methods This was a prospective, multicenter observational study conducted at two urban academic institutions. Learners novice to LUS completed a 30-min training session on lung image acquisition which included lecture and hands-on patient scanning. Learners independently acquired images on patients with suspected AHF. Automatic B-line quantification was obtained offline after completion of the study. Machine AI counted the maximum number of B-lines visualized during a clip. The criterion standard for B-line counts was semi-quantitative analysis by a blinded point-of-care LUS expert reviewer. Image quality was blindly determined by an expert reviewer. A second expert reviewer blindly determined B-line counts and image quality. Intraclass correlation was used to determine agreement between machine AI and expert, and expert to expert. Results Fifty-one novice learners completed 87 scans on 29 patients. We analyzed data from 611 lung zones. The overall intraclass correlation for agreement between novice learner images post-processed with AI technology and expert review was 0.56 (confidence interval [CI] 0.51–0.62), and 0.82 (CI 0.73–0.91) between experts. Median image quality was 4 (on a 5-point scale), and correlation between experts for quality assessment was 0.65 (CI 0.48–0.82). Conclusion After a short training session, novice learners were able to obtain high-quality images. When the AI deep learning algorithm was applied to those images, it quantified B-lines with moderate-to-fair correlation as compared to semi-quantitative analysis by expert review. This data shows promise, but further development is needed before widespread clinical use.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3