Large sample size and nonlinear sparse models outline epistatic effects in inflammatory bowel disease

Author:

Verplaetse NoraORCID,Passemiers Antoine,Arany Adam,Moreau Yves,Raimondi DanieleORCID

Abstract

Abstract Background Despite clear evidence of nonlinear interactions in the molecular architecture of polygenic diseases, linear models have so far appeared optimal in genotype-to-phenotype modeling. A key bottleneck for such modeling is that genetic data intrinsically suffers from underdetermination ($$p \gg n$$ p n ). Millions of variants are present in each individual while the collection of large, homogeneous cohorts is hindered by phenotype incidence, sequencing cost, and batch effects. Results We demonstrate that when we provide enough training data and control the complexity of nonlinear models, a neural network outperforms additive approaches in whole exome sequencing-based inflammatory bowel disease case–control prediction. To do so, we propose a biologically meaningful sparsified neural network architecture, providing empirical evidence for positive and negative epistatic effects present in the inflammatory bowel disease pathogenesis. Conclusions In this paper, we show that underdetermination is likely a major driver for the apparent optimality of additive modeling in clinical genetics today.

Funder

Fonds Wetenschappelijk Onderzoek

Advanced machine learning for Innovative Drug Discovery

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3