Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling

Author:

Pagès-Gallego MarcORCID,de Ridder Jeroen

Abstract

Abstract Background Nanopore-based DNA sequencing relies on basecalling the electric current signal. Basecalling requires neural networks to achieve competitive accuracies. To improve sequencing accuracy further, new models are continuously proposed with new architectures. However, benchmarking is currently not standardized, and evaluation metrics and datasets used are defined on a per publication basis, impeding progress in the field. This makes it impossible to distinguish data from model driven improvements. Results To standardize the process of benchmarking, we unified existing benchmarking datasets and defined a rigorous set of evaluation metrics. We benchmarked the latest seven basecaller models by recreating and analyzing their neural network architectures. Our results show that overall Bonito’s architecture is the best for basecalling. We find, however, that species bias in training can have a large impact on performance. Our comprehensive evaluation of 90 novel architectures demonstrates that different models excel at reducing different types of errors and using recurrent neural networks (long short-term memory) and a conditional random field decoder are the main drivers of high performing models. Conclusions We believe that our work can facilitate the benchmarking of new basecaller tools and that the community can further expand on this work.

Funder

Health~Holland

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3