Abstract
Abstract
Background
Mobile elements comprise a large fraction of metazoan genomes. Accumulation of mobile elements is bound to produce multiple putative double-stranded RNA (dsRNA) structures within the transcriptome. These endogenous dsRNA structures resemble viral RNA and may trigger false activation of the innate immune response, leading to severe damage to the host cell. Adenosine to inosine (A-to-I) RNA editing is a common post-transcriptional modification, abundant within repetitive elements of all metazoans. It was recently shown that a key function of A-to-I RNA editing by ADAR1 is to suppress the immunogenic response by endogenous dsRNAs.
Results
Here, we analyze the transcriptomes of dozens of species across the Metazoa and identify a strong genomic selection against endogenous dsRNAs, resulting in their purification from the canonical transcriptome. This purifying selection is especially strong for long and nearly perfect dsRNAs. These are almost absent from mRNAs, but not pre-mRNAs, supporting the notion of selection due to cytoplasmic processes. The few long and nearly perfect structures found in human transcripts are weakly expressed and often heavily edited.
Conclusion
Purifying selection of long dsRNA is an important defense mechanism against false activation of innate immunity. This newly identified principle governs the integration of mobile elements into the genome, a major driving force of genome evolution. Furthermore, we find that most ADAR1 activity is not required to prevent an immune response to endogenous dsRNAs. The critical targets of ADAR1 editing are, likely, to be found mostly in non-canonical transcripts.
Funder
Juvenile Diabetes Research Foundation United States of America
Israel Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献