The androgen receptor interacts with GATA3 to transcriptionally regulate a luminal epithelial cell phenotype in breast cancer
-
Published:2024-02-05
Issue:1
Volume:25
Page:
-
ISSN:1474-760X
-
Container-title:Genome Biology
-
language:en
-
Short-container-title:Genome Biol
Author:
Hosseinzadeh Leila, Kikhtyak Zoya, Laven-Law Geraldine, Pederson Stephen M., Puiu Caroline G., D’Santos Clive S., Lim Elgene, Carroll Jason S., Tilley Wayne D., Dwyer Amy R., Hickey Theresa E.ORCID
Abstract
Abstract
Background
The androgen receptor (AR) is a tumor suppressor in estrogen receptor (ER) positive breast cancer, a role sustained in some ER negative breast cancers. Key factors dictating AR genomic activity in a breast context are largely unknown. Herein, we employ an unbiased chromatin immunoprecipitation-based proteomic technique to identify endogenous AR interacting co-regulatory proteins in ER positive and negative models of breast cancer to gain new insight into mechanisms of AR signaling in this disease.
Results
The DNA-binding factor GATA3 is identified and validated as a novel AR interacting protein in breast cancer cells irrespective of ER status. AR activation by the natural ligand 5α-dihydrotestosterone (DHT) increases nuclear AR-GATA3 interactions, resulting in AR-dependent enrichment of GATA3 chromatin binding at a sub-set of genomic loci. Silencing GATA3 reduces but does not prevent AR DNA binding and transactivation of genes associated with AR/GATA3 co-occupied loci, indicating a co-regulatory role for GATA3 in AR signaling. DHT-induced AR/GATA3 binding coincides with upregulation of luminal differentiation genes, including EHF and KDM4B, established master regulators of a breast epithelial cell lineage. These findings are validated in a patient-derived xenograft model of breast cancer. Interaction between AR and GATA3 is also associated with AR-mediated growth inhibition in ER positive and ER negative breast cancer.
Conclusions
AR and GATA3 interact to transcriptionally regulate luminal epithelial cell differentiation in breast cancer regardless of ER status. This interaction facilitates the tumor suppressor function of AR and mechanistically explains why AR expression is associated with less proliferative, more differentiated breast tumors and better overall survival in breast cancer.
Funder
National Health and Medical Research Council National Breast Cancer Foundation
Publisher
Springer Science and Business Media LLC
Reference109 articles.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2021, n/a. 2. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52. 3. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Nat Acad Sci. 2001;98:10869. 4. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y. Pietenpol JA Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121:2750–67. 5. Ricciardelli C, Bianco-Miotto T, Jindal S, Butler LM, Leung S, McNeil CM, O’Toole SA, Ebrahimie E, Millar EKA, Sakko AJ, et al. The magnitude of androgen receptor positivity in breast cancer is critical for reliable prediction of disease outcome. Clin Cancer Res. 2018;24:2328–41.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|