INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants
-
Published:2021-08-23
Issue:1
Volume:22
Page:
-
ISSN:1474-760X
-
Container-title:Genome Biology
-
language:en
-
Short-container-title:Genome Biol
Author:
Dong Chenyang, Simonett Shane P., Shin Sunyoung, Stapleton Donnie S., Schueler Kathryn L., Churchill Gary A., Lu Leina, Liu Xiaoxiao, Jin Fulai, Li Yan, Attie Alan D., Keller Mark P., Keleş SündüzORCID
Abstract
AbstractGenome-wide association studies reveal many non-coding variants associated with complex traits. However, model organism studies largely remain as an untapped resource for unveiling the effector genes of non-coding variants. We develop INFIMA, Integrative Fine-Mapping, to pinpoint causal SNPs for diversity outbred (DO) mice eQTL by integrating founder mice multi-omics data including ATAC-seq, RNA-seq, footprinting, and in silico mutation analysis. We demonstrate INFIMA’s superior performance compared to alternatives with human and mouse chromatin conformation capture datasets. We apply INFIMA to identify novel effector genes for GWAS variants associated with diabetes. The results of the application are available at http://www.statlab.wisc.edu/shiny/INFIMA/.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Reference111 articles.
1. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014; 42(D1):1001–6. 2. Nicolae D, Gamazon E, Zhang W, Duan S, Dolan M, Cox N. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010; 6(4):1000888. https://doi.org/10.1371/journal.pgen.1000888. 3. Dimas A, Deutsch S, Stranger B, Montgomery S, Borel C, Attar-Cohen H, Ingle C, Beazley C, Arcelus M, Sekowska M, Gagnebin M, Nisbett J, Deloukas P, Dermitzakis E, Antonarakis S. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science. 2009; 325(5945):1246–50. 4. Mahajan A, Taliun D, Thurner M, Robertson N, Torres J, Rayner N, Payne A, Steinthorsdottir V, Scott R, Grarup N, Cook J, Schmidt E, Wuttke M, Sarnowski C, Mägi R, Nano J, Gieger C, Trompet S, Lecoeur C, Preuss M, Prins B, Guo X, Bielak L, Below J, Bowden D, Chambers J, Kim Y, Ng M, Petty L, Sim X, Zhang W, Bennett A, Bork-Jensen J, Brummett C, Canouil M, Ec kardt K, Fischer K, Kardia S, Kronenberg F, Läll K, Liu C, Locke A, Luan J, Ntalla I, Nylander V, Schönherr S, Schurmann C, Yengo L, Bottinger E, Brandslund I, Christensen C, Dedoussis G, Florez J, Ford I, Franco O, Frayling T, Giedraitis V, Hackinger S, Hattersley A, Herder C, Ikram M, Ingelsson M, Jørgensen M, Jørgensen T, Kriebel J, Kuusisto J, Ligthart S, Lindgren C, Linneberg A, Lyssenko V, Mamakou V, Meitinger T, Mohlke K, Morris A, Nadkarni G, Pankow J, Peters A, Sattar N, Stančáková A, Strauch K, Taylor K, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tuomilehto J, Witte D, Dupuis J, Peyser P, Zeggini E, Loos R, Froguel P, Ingelsson E, Lind L, Groop L, Laakso M, Collins F, Jukema J, Palmer C, H.Grallert, Metspalu A, Dehghan A, Köttgen A, Abecasis G, Meigs J, Rotter J, Marchini J, Pedersen O, Hansen T, Langenberg C, Wareham N, Stefansson K, Gloyn A, Morris A, Boehnke M, McCarthy M. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018; 50(11):1505–13. https://doi.org/10.1038/s41588-018-0241-6. 5. Smemo S, Tena J, Kim K-H, Gamazon E, Sakabe N, Gómez-Marín C, Aneas I, Credidio F, Sobreira D, Wasserman N, et al. Obesity-associated variants within fto form long-range functional connections with irx3. Nature. 2014; 507(7492):371–5.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|