Author:
Leclerc Xavier,Danos Olivier,Scherman Daniel,Kichler Antoine
Abstract
Abstract
Background
Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome.
Results
In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin.
Conclusion
Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Graham IR, Beattie SG, Hill VJ, Dickson G: Oligonucleotide-based gene correction strategies: applications to neuromuscular and cardiovascular diseases. Croat Med J. 2001, 42 (4): 467-472.
2. Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, Underwood RA, Song KM, Sussman M, Byers PH, et al: Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science. 2004, 303 (5661): 1198-1201. 10.1126/science.1088757.
3. Gruenert DC, Bruscia E, Novelli G, Colosimo A, Dallapiccola B, Sangiuolo F, Goncz KK: Sequence-specific modification of genomic DNA by small DNA fragments. J Clin Invest. 2003, 112 (5): 637-641.
4. Ludtke JJ, Zhang G, Sebestyen MG, Wolff JA: A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J Cell Sci. 1999, 112 (Pt 12): 2033-2041.
5. Colosimo A, Goncz KK, Novelli G, Dallapiccola B, Gruenert DC: Targeted correction of a defective selectable marker gene in human epithelial cells by small DNA fragments. Mol Ther. 2001, 3 (2): 178-185. 10.1006/mthe.2000.0242.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献