Improving precision of field inventory estimation of aboveground biomass through an alternative view on plot biomass

Author:

Kleinn ChristophORCID,Magnussen Steen,Nölke Nils,Magdon Paul,Álvarez-González Juan Gabriel,Fehrmann Lutz,Pérez-Cruzado César

Abstract

AbstractWe contrast a new continuous approach (CA) for estimating plot-level above-ground biomass (AGB) in forest inventories with the current approach of estimating AGB exclusively from the tree-level AGB predicted for each tree in a plot, henceforth called DA (discrete approach). With the CA, the AGB in a forest is modelled as a continuous surface and the AGB estimate for a fixed-area plot is computed as the integral of the AGB surface taken over the plot area. Hence with the CA, the portion of the biomass of in-plot trees that extends across the plot perimeter is ignored while the biomass from trees outside of the plot reaching inside the plot is added. We use a sampling simulation with data from a fully mapped two hectare area to illustrate that important differences in plot-level AGB estimates can emerge. Ideally CA-based estimates of mean AGB should be less variable than those derived from the DA. If realized, this difference translates to a higher precision from field sampling, or a lower required sample size. In our case study with a target precision of 5% (i.e. relative standard error of the estimated mean AGB), the CA required a 27.1% lower sample size for small plots of 100 m2 and a 10.4% lower sample size for larger plots of 1700 m2. We examined sampling induced errors only and did not yet consider model errors. We discuss practical issues in implementing the CA in field inventories and the potential in applications that model biomass with remote sensing data. The CA is a variation on a plot design for above-ground forest biomass; as such it can be applied in combination with any forest inventory sampling design.

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3