Decomposition and stabilization of organic matter in an old-growth tropical riparian forest: effects of soil properties and vegetation structure

Author:

de Godoy Fernandes Pedro Henrique,de Souza Andréa Lúcia Teixeira,Tanaka Marcel OkamotoORCID,Sebastiani Renata

Abstract

Abstract Background Nutrient cycling in tropical forests has a large importance for primary productivity, and decomposition of litterfall is a major process influencing nutrient balance in forest soils. Although large-scale factors strongly influence decomposition patterns, small-scale factors can have major influences, especially in old-growth forests that have high structural complexity and strong plant-soil correlations. Here we evaluated the effects of forest structure and soil properties on decomposition rates and stabilization of soil organic matter using the Tea Bag Index (TBI) in an old-growth riparian forest in southeastern Brazil. These data sets were described separately using Principal Components Analysis (PCA). The main axes for each analysis, together with soil physical properties (clay content and soil moisture), were used to construct structural equations models that evaluated the different parameters of the TBI, decomposition rates and stabilization factor. The best model was selected using Akaike’s criterion. Results Forest structure and soil physical and chemical properties presented large variation among plots within the studied forest. Clay content was strongly correlated with soil moisture and the first PCA axis of soil chemical properties, and model selection indicated that clay content was a better predictor than this axis. Decomposition rates presented a large variation among tea bags (0.009 and 0.098 g·g− 1·d− 1) and were positively related with forest structure, as characterized by higher basal area, tree density and larger trees. The stabilization factor varied between 0.211–0.426 and was related to forest stratification and soil clay content. Conclusions The old-growth forest studied presented high heterogeneity in both forest structure and soil properties at small spatial scales, that influenced decomposition processes and probably contributed to small-scale variation in nutrient cycling. Decomposition rates were only influenced by forest structure, whereas the stabilization factor was influenced by both forest structure and soil properties. Heterogeneity in ecological processes can contribute to the resilience of old-growth forests, highlighting the importance of restoration strategies that consider the spatial variation of ecosystem processes.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3