Author:
Zhou Mi,Li Zhaolong,Liu Yun,Fang Yuehua,Qin Le,Yang Wenjie,Yan Fuhua,Zhao Qiang
Abstract
Abstract
Background
To date, the extended Morrow procedure is considered the gold standard treatment for patients with obstructive hypertrophic cardiomyopathy who experience severe symptoms and are unresponsive to medication treatment. We therefore aimed to perform transapical intramyocardial septal microwave ablation to reduce the thickness of the interventricular septum myocardium in a minimally invasive method.
Methods
Fourteen swine were divided to form either a microwave ablation group (n = 7) or a sham group (n = 7). In the microwave ablation group, a transapical microwave antenna was inserted into the septum to ablate each myocardial segment at 40 W for 1 min, while in the sham group, the same operation was performed but without power output. We used echocardiography, electrocardiogram, during the operation. And added computerized tomography, cardiac nuclear magnetic resonance during follow-up.
Results
Segment hypokinesis was observed in all swine immediately following ablation. Compared with the sham group, the thickness of ablated segments in the ablation group decreased significantly 1 month post-operation (ablation group, 5.53 ± 1.00 mm vs. 8.03 ± 1.15 mm, respectively, P < 0.01; sham group, 8.40 ± 0.94 mm vs. 8.21 ± 1.09 mm, respectively, P = 0.081), and the outcome was still observed 1 year post-operation (ablation group, 3.36 ± 0.85 mm vs. 8.03 ± 1.15 mm, respectively, P < 0.01). No perforation of the septum was observed during the procedure or follow-up, and no heart failure or sudden cardiac death occurred during postoperative feeding.
Conclusions
Transapical intramyocardial septal microwave ablation can effectively and safely produce a large region of necrosis. This technique can potentially mimic surgical myectomy while avoiding cardiopulmonary bypass and median sternotomy in high-risk hypertrophic obstructive cardiomyopathy patients.
Funder
Science and Technology Commission of Shanghai Municipality
Publisher
Springer Science and Business Media LLC