Abstract
Abstract
Background
Despite considerable progress, it remains unclear why some patients admitted for COVID-19 develop adverse outcomes while others recover spontaneously. Clues may lie with the predisposition to hypoxemia or unexpected absence of dyspnea (‘silent hypoxemia’) in some patients who later develop respiratory failure. Using a recently-validated breath-holding technique, we sought to test the hypothesis that gas exchange and ventilatory control deficits observed at admission are associated with subsequent adverse COVID-19 outcomes (composite primary outcome: non-invasive ventilatory support, intensive care admission, or death).
Methods
Patients with COVID-19 (N = 50) performed breath-holds to obtain measurements reflecting the predisposition to oxygen desaturation (mean desaturation after 20-s) and reduced chemosensitivity to hypoxic-hypercapnia (including maximal breath-hold duration). Associations with the primary composite outcome were modeled adjusting for baseline oxygen saturation, obesity, sex, age, and prior cardiovascular disease. Healthy controls (N = 23) provided a normative comparison.
Results
The adverse composite outcome (observed in N = 11/50) was associated with breath-holding measures at admission (likelihood ratio test, p = 0.020); specifically, greater mean desaturation (12-fold greater odds of adverse composite outcome with 4% compared with 2% desaturation, p = 0.002) and greater maximal breath-holding duration (2.7-fold greater odds per 10-s increase, p = 0.036). COVID-19 patients who did not develop the adverse composite outcome had similar mean desaturation to healthy controls.
Conclusions
Breath-holding offers a novel method to identify patients with high risk of respiratory failure in COVID-19. Greater breath-hold induced desaturation (gas exchange deficit) and greater breath-holding tolerance (ventilatory control deficit) may be independent harbingers of progression to severe disease.
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Reference40 articles.
1. Rosenbaum L. Facing Covid-19 in Italy - Ethics, Logistics, and Therapeutics on the Epidemic's Front Line. N Engl J Med. 2020.
2. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.
3. WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected; interim guidance, May 27th. 2020 [cited 2020 July, 7th]; https://apps.who.int/iris/bitstream/handle/10665/332196/WHO-2019-nCoV-clinical-2020.5-eng.pdf?sequence=1&isAllowed=y.
4. Bello-Chavolla OY, Bahena-Lopez JP, Antonio-Villa NE, Vargas-Vazquez A, Gonzalez-Diaz A, Marquez-Salinas A et al. Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico. J Clin Endocrin Metab. 2020;105(8).
5. Angeli E, Dalto S, Marchese S, Setti L, Bonacina M, Galli F, et al. Prognostic value of CT integrated with clinical and laboratory data during the first peak of the COVID-19 pandemic in Northern Italy: a nomogram to predict unfavorable outcome. Eur J Radiol. 2021;137:109612.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献