Brain tissue oxygen monitoring in traumatic brain injury: part I—To what extent does PbtO2 reflect global cerebral physiology?

Author:

Svedung Wettervik Teodor,Beqiri Erta,Bögli Stefan Yu,Placek Michal,Guilfoyle Mathew R.,Helmy Adel,Lavinio Andrea,O’Leary Ronan,Hutchinson Peter J.,Smielewski Peter

Abstract

Abstract Background The primary aim was to explore the association of global cerebral physiological variables including intracranial pressure (ICP), cerebrovascular reactivity (PRx), cerebral perfusion pressure (CPP), and deviation from the PRx-based optimal CPP value (∆CPPopt; actual CPP-CPPopt) in relation to brain tissue oxygenation (pbtO2) in traumatic brain injury (TBI). Methods A total of 425 TBI patients with ICP- and pbtO2 monitoring for at least 12 h, who had been treated at the neurocritical care unit, Addenbrooke’s Hospital, Cambridge, UK, between 2002 and 2022 were included. Generalized additive models (GAMs) and linear mixed effect models were used to explore the association of ICP, PRx, CPP, and CPPopt in relation to pbtO2. PbtO2 < 20 mmHg, ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, and ∆CPPopt < − 5 mmHg were considered as cerebral insults. Results PbtO2 < 20 mmHg occurred in median during 17% of the monitoring time and in less than 5% in combination with ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, or ∆CPPopt < − 5 mmHg. In GAM analyses, pbtO2 remained around 25 mmHg over a large range of ICP ([0;50] mmHg) and PRx [− 1;1], but deteriorated below 20 mmHg for extremely low CPP below 30 mmHg and ∆CPPopt below − 30 mmHg. In linear mixed effect models, ICP, CPP, PRx, and ∆CPPopt were significantly associated with pbtO2, but the fixed effects could only explain a very small extent of the pbtO2 variation. Conclusions PbtO2 below 20 mmHg was relatively frequent and often occurred in the absence of disturbances in ICP, PRx, CPP, and ∆CPPopt. There were significant, but weak associations between the global cerebral physiological variables and pbtO2, suggesting that hypoxic pbtO2 is often a complex and independent pathophysiological event. Thus, other variables may be more crucial to explain pbtO2 and, likewise, pbtO2 may not be a suitable outcome measure to determine whether global cerebral blood flow optimization such as CPPopt therapy is successful.

Funder

Medical Research Council

Gates Cambridge Scholarship

Swiss National Science Foundation

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3