Author:
Wang Liping,Nie Guqiao,Yan Fengqin,Zhou Nianli,Zhang Meng,Peng Wen
Abstract
Abstract
Background
The ZJU index, a novel calculation that combines body mass index, triglycerides, fasting blood glucose and the ratio of alanine aminotransferase to aspartate aminotransferase, is a closely related measure of obesity and insulin resistance. Studies of the ZJU index in relation to obstructive sleep apnea syndrome (OSAS) have not been reported. This study assessed the correlation between the ZJU values and OSAS risk.
Methods
A total of 2,130 participants who underwent polysomnographic monitoring were included in the study. The participants’ basic information and laboratory biochemical indicators were collected, and the ZJU index was computed. The ZJU index was divided into quartiles. The correlation between the different ZJU index levels and OSAS risk was assessed using logistic regression. Drew a receiver operating characteristic (ROC) relationship curve, with prediction efficacy judged by the area under the curve (AUC), and found the optimum cut-off point for ZJU index to predict OSAS. Relative risks were presented as odds ratios (OR). The range of OR values is expressed in the form of 95% confidence intervals (95% CI).
Results
The number of patients diagnosed with OSAS increased progressively with increasing ZJU index (T1: 9.4%; T2: 20.6%; T3: 28.3%; T4: 41.7%; P < 0.001). The additional confounders were adjusted by the logistic regression models, the study revealed an independent correlation between ZJU index and OSAS. (P < 0.001). The OSAS risk was notably higher at the highest ZJU index levels. (OR = 2.046 [95% CI: 1.057 to 3.964]). The ROC curve for the ZJU index showed an AUC of 0.64 (P < 0.001) for males and 0.75 (P < 0.001) for females, with a specificity of 64% and 55% and a sensitivity of 60% and 92% for males and females, respectively, with the optimum cut-off values of 36.568 and 34.722, respectively.
Conclusion
A high ZJU index was significantly associated with an increasing risk of OSAS. The ZJU is expected to be a meaningful index for detecting OSAS in the general population.
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Reference35 articles.
1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.
2. Maspero C, Giannini L, Galbiati G, Rosso G, Farronato G. Obstructive sleep apnea syndrome: a literature review. Minerva Stomatol. 2015;64(2):97–109.
3. Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005;112(17):2660–7.
4. Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Investig. 2020;130(10):5042–51.
5. Unnikrishnan D, Jun J, Polotsky V. Inflammation in sleep apnea: an update. Reviews in Endocrine & Metabolic Disorders. 2015;16(1):25–34.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献