Abstract
AbstractWe investigate the multiplicity of solutions for problems involving the fractional N-Laplacian. We obtain three theorems depending on the source terms in which the nonlinearities cross some eigenvalues. We obtain these results by direct computations with the eigenvalues and the corresponding eigenfunctions for the fractional N-Laplacian eigenvalue problem in the fractional Orlicz–Sobolev spaces, the contraction mapping principle on the fractional Orlicz–Sobolev spaces and Leray–Schauder degree theory.
Funder
ministry of education, science and technology
ministry of science, ict and future planning
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference21 articles.
1. Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: Fractional Orlicz-Sobolev embeddings. Journal de Mathématiques Pures et Appliquées 149(5), 216–253 (2021)
2. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Not. Am. Math. Soc. 51(2), 1336–1347 (2004)
3. Azroul, E., Benkirane, A., Srati, M.: Existence of solutions for a nonlocal type problem in fractional Orlicz-Sobolev spaces (2019). preprint
4. Bahrouni, S., Ounaies, H.: Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete Contin. Dyn. Syst. 40(5), 2917–2944 (2020)
5. Bahrouni, S., Ounaies, H., Salort, A.M.: Variational eigenvalues of the fractional g-Laplacian. 2011.14742