Direct and inverse problems for nonlocal heat equation with boundary conditions of periodic type

Author:

Sadybekov Makhmud,Dildabek GulnarORCID,Ivanova Marina

Abstract

AbstractA mathematical model of the process of heat diffusion in a closed metal wire is considered. This wire is wrapped around a thin sheet of insulation material. We assume that the insulation is slightly permeable. Because of this, the temperature at the point of the wire on one side of the insulation influences the diffusion process in the wire on the other side of the insulation. Thus, the standard heat equation will change and an extra term with involution will be added. When modeling of this process there arises an initial-boundary value problem for a one-dimensional heat equation with involution and with a boundary condition of periodic type with respect to a spatial variable. We prove the well-posedness of the formulated problem in the class of strong generalized solutions. The use of the method of separation of variables leads to a spectral problem for an ordinary differential operator with involution at the highest derivative. All eigenfunctions of the problem are constructed. In the case when all eigenvalues of the problem are simple, the system of eigenfunctions does not form an unconditional basis. A criterion when this spectral problem can have an infinite number of multiple eigenvalues is proved. Corresponding root subspaces consist of one eigenfunction and one associated function. We prove that the system of root functions forms an unconditional basis and can be used for constructing a solution of the heat conduction problem by the method of separation of variables. We also consider an inverse problem. This is the problem on restoring (simultaneously with solving) of an unknown stationary source of external influence with respect to an additionally known final state. The existence of a unique solution of this inverse problem and its stability with respect to initial and final data are proved.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3