Author:
Panda Sumati Kumari,Vijayakumar Velusamy,Nisar Kottakkaran Sooppy
Abstract
AbstractWe introduce a notion of nonlinear cyclic orbital $(\xi -\mathscr{F})$
(
ξ
−
F
)
-contraction and prove related results. With these results, we address the existence and uniqueness results with periodic/anti-periodic boundary conditions for:1. The nonlinear multi-order fractional differential equation $$ \mathcal{L}(\mathcal{D})\theta (\varsigma )=\sigma \bigl(\varsigma , \theta ( \varsigma ) \bigr), \quad \varsigma \in \mathscr{J}=[0,\mathscr{A}], \mathscr{A}>0, $$
L
(
D
)
θ
(
ς
)
=
σ
(
ς
,
θ
(
ς
)
)
,
ς
∈
J
=
[
0
,
A
]
,
A
>
0
,
where $$\begin{aligned} &\mathcal{L}(\mathcal{D})=\gamma _{w} \,{}^{c} \mathcal{D}^{\delta _{w}}+ \gamma _{w-1} \,{}^{c} \mathcal{D}^{\delta _{w-1}}+\cdots+\gamma _{1} \,{}^{c} \mathcal{D}^{\delta _{1}}+\gamma _{0} \,{}^{c} \mathcal{D}^{\delta _{0}},\\ &\gamma _{\flat}\in \mathbb{R}\quad (\flat =0,1,2,3,\ldots,w), \qquad \gamma _{w} \neq 0, \\ &0\leq \delta _{0}< \delta _{1}< \delta _{2}< \cdots< \delta _{w-1}< \delta _{w}< 1; \end{aligned}$$
L
(
D
)
=
γ
w
c
D
δ
w
+
γ
w
−
1
c
D
δ
w
−
1
+
⋯
+
γ
1
c
D
δ
1
+
γ
0
c
D
δ
0
,
γ
♭
∈
R
(
♭
=
0
,
1
,
2
,
3
,
…
,
w
)
,
γ
w
≠
0
,
0
≤
δ
0
<
δ
1
<
δ
2
<
⋯
<
δ
w
−
1
<
δ
w
<
1
;
2. The nonlinear multi-term fractional delay differential equation $$\begin{aligned} &\mathcal{L}(\mathcal{D})\theta (\varsigma ) =\sigma \bigl(\varsigma , \theta ( \varsigma ),\theta (\varsigma -\tau ) \bigr), \quad \varsigma \in \mathscr{J}=[0, \mathscr{A}], \mathscr{A}>0; \\ &\theta (\varsigma ) =\bar{\sigma}(\varsigma ),\quad \varsigma \in [-\tau ,0], \end{aligned}$$
L
(
D
)
θ
(
ς
)
=
σ
(
ς
,
θ
(
ς
)
,
θ
(
ς
−
τ
)
)
,
ς
∈
J
=
[
0
,
A
]
,
A
>
0
;
θ
(
ς
)
=
σ
¯
(
ς
)
,
ς
∈
[
−
τ
,
0
]
,
where $$\begin{aligned} &\mathcal{L}(\mathcal{D})=\gamma _{w} \,{}^{c} \mathcal{D}^{\delta _{w}}+ \gamma _{w-1} \,{}^{c} \mathcal{D}^{\delta _{w-1}}+\cdots+\gamma _{1} \,{}^{c} \mathcal{D}^{\delta _{1}}+\gamma _{0} \,{}^{c} \mathcal{D}^{\delta _{0}},\\ &\gamma _{\flat}\in \mathbb{R}\quad (\flat =0,1,2,3,\ldots,w), \qquad \gamma _{w} \neq 0, \\ &0\leq \delta _{0}< \delta _{1}< \delta _{2}< \cdots< \delta _{w-1}< \delta _{w}< 1; \end{aligned}$$
L
(
D
)
=
γ
w
c
D
δ
w
+
γ
w
−
1
c
D
δ
w
−
1
+
⋯
+
γ
1
c
D
δ
1
+
γ
0
c
D
δ
0
,
γ
♭
∈
R
(
♭
=
0
,
1
,
2
,
3
,
…
,
w
)
,
γ
w
≠
0
,
0
≤
δ
0
<
δ
1
<
δ
2
<
⋯
<
δ
w
−
1
<
δ
w
<
1
;
moreover, here ${}^{c}\mathcal{D}^{\delta}$
D
δ
c
is predominantly called Caputo fractional derivative of order δ.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference41 articles.
1. Kochubei, A.N., Luchko, Y.F., Tarasov, V.E., Petras, I.: Handbook of Fractional Calculus with Applications: Applications in Physics. Part A. de Gruyter, Berlin (2019)
2. Kochubei, A.N., Luchko, Y.F., Tarasov, V.E., Petras, I.: Handbook of Fractional Calculus with Applications: Applications in Physics. Part B. de Gruyter, Berlin (2019)
3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
4. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016). https://doi.org/10.2298/TSCI160111018A
5. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)