Klf4-Sirt3/Pparα-Lcad pathway contributes to high phosphate-induced lipid degradation

Author:

Yu Angen,Xu Yichuang,Hogstrand Christer,Zhao Tao,Tan Xiao-Ying,Wei Xiaolei,Song Yu-Feng,Luo Zhi

Abstract

Abstract Background Phosphorus commonly reduces lipid deposition in the vertebrates. However, the underlying mechanisms involved in the process remain unclear. Methods Yellow catfish were given three experimental diets with dietary phosphate levels of 3.22, 6.47 and 7.99 g Pi kg− 1, respectively, for 8 weeks. The contents of triglyceride, non-esterified free fatty acids, adenosine triphosphate, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide, enzymatic activities, mRNA and protein expression were determined in the intestinal tissues. Hematoxylin and eosin, Oil Red O staining, and transmission electron microscope were performed for intestinal tissues. Primary intestinal epithelial cells were isolated from yellow catfish intestine. Western blot analysis, Immunoprecipitation assays, Immunofluorescence staining, and RNA extraction and quantitative real-time PCR were decided. Luciferase reporter assays and electrophoretic mobility shift assay were used to evaluate the function of Sirt3, PPARα and Lcad promoters. Results High dietary phosphate intake activated intestinal phosphate absorption and excretion, and reduced lipid deposition through increasing lipolysis in the intestine. Moreover, phosphate incubation increased the mRNA and protein expression of krüppel like factor 4 (klf4), silent mating-type information regulation 2 homolog 3 (sirt3), peroxisome proliferator activated receptor alpha (pparα) and long chain acyl-CoA dehydrogenase (lcad) in the intestinal epithelial cells (IECs), and klf4 knockdown attenuated the phosphate-induced increase of protein levels of Sirt3, Pparα and Lcad. Further investigation found that Klf4 overexpression increased the activity of sirt3 and pparα promoters, which in turn reduced the acetylation and protein level of Lcad. Conclusion Dietary Pi excess induced lipid degradation by the activation of the Klf4-Sirt3/Pparα-Lcad pathway in the intestine and primary IECs. Graphical Abstract

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3