Simvastatin induces pyroptosis via ROS/caspase-1/GSDMD pathway in colon cancer

Author:

Xie Wei,Peng Mingjing,Liu Ying,Zhang Bocheng,Yi Liang,Long Ying

Abstract

Abstract Background The outcome of patients with colon cancer is still unsatisfied nowadays. Simvastatin is a type of statins with anti-cancer activity, but its effect on colon cancer cells remains unclear. The present study is intended to determine the underlying mechanism of simvastatin in treatment of colon cancer. Methods The viability and pyroptosis rate of cells treated and untreated with simvastatin were analysed by CCK-8 and flow cytometry assays, respectively. We used DCFH-DA and flow cytometry to detect reactive oxygen species (ROS) production. Levels of pyroptosis markers were detected by western blotting analysis or immunofluorescence staining. Besides, the anticancer properties of simvastatin on colon cancer were further demonstrated using a cell line based xenograft tumor model. Results Simvastatin treatment in HCT116 and SW620 induced pyroptosis and suppressed cell proliferation, with changes in the expression level of NLPR3, ASC, cleaved-caspase-1, mature IL-1β, IL-18 and GSDMD-N. Moreover, inhibition of caspase-1 and ROS attenuated the effects of simvastatin on cancer cell viability. In addition, it was identified that simvastatin has an anti-tumor effect by down-regulating ROS production and inducing downstream caspase-1 dependent pyroptosis in the subcutaneous transplantation tumors of HCT116 cells in BALB/c nude mice. Conclusions Our in vitro and in vivo results indicated that simvastatin induced pyroptosis through ROS/caspase-1/GSDMD pathway, thereby serving as a potential agent for colon cancer treatment.

Funder

Natural Science Foundation of Hunan Province

Science and Technology Bureau, Changsha

National Natural Science Foundation of China

Hunan Provincial Science and Technology Department

Natural Science Foundation of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3