Preeclampsia impedes foetal kidney development by delivering placenta-derived exosomes to glomerular endothelial cells

Author:

Gu Mengqi,Chen Pengzheng,Zeng Dongmei,Jiang Xiaotong,Lv Qingfeng,Li Yuchen,Zhang Fengyuan,Wan Shuting,Zhou Qian,Lu Yuan,Wang Xietong,Li Lei

Abstract

Abstract Background Foetal renal dysplasia is still the main cause of adult renal disease. Placenta-derived exosomes are an important communication tool, and they may play an important role in placental (both foetal and maternal) function. We hypothesize that in women with preeclampsia, foetal renal dysplasia is impeded by delivering placenta-derived exosomes to glomerular endothelial cells. Methods In the present study, we established a PE trophoblast oxidative stress model to isolate exosomes from supernatants by ultracentrifugation (NO-exo and H/R-exo) and collected normal and PE umbilical cord blood plasma to isolate exosomes by ultracentrifugation combined with sucrose density gradient centrifugation (N-exo and PE-exo), then we investigated their effects on foetal kidney development by in vitro, ex vivo and in vivo models. Results The PE trophoblast oxidative stress model was established successfully. After that, in in vitro studies, we found that H/R-exo and PE-exo could adversely affect glomerular endothelial cell proliferation, tubular formation, migration, and barrier functions. In ex vivo studies, H/R-exo and PE-exo both inhibited the growth and branch formation of kidney explants, along with the decrease of VE-cadherin and Occludin. In in vivo studies, we also found that H/R-exo and PE-exo could result in renal dysplasia, reduced glomerular number, and reduced barrier function in foetal mice. Conclusions In conclusion, we demonstrated that PE placenta-derived exosomes could lead to foetal renal dysplasia by delivering placenta-derived exosomes to foetal glomerular endothelial cells, which provides a novel understanding of the pathogenesis of foetal renal dysplasia.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3