Estrogen downregulates CD73/adenosine axis hyperactivity via adaptive modulation PI3K/Akt signaling to prevent myocarditis and arrhythmias during chronic catecholamines stress

Author:

Ndzie Noah Marie Louise,Adzika Gabriel Komla,Mprah Richard,Adekunle Adebayo Oluwafemi,Koda Stephane,Adu-Amankwaah Joseph,Xu Yaxin,Kanwore Kouminin,Wowui Prosperl Ivette,Sun Hong

Abstract

Abstract Background During myocardial damage, the sex hormone estrogen and CD73, the main enzyme that converts AMP into adenosine, are cardioprotective molecules. However, it is unclear how these two molecules work together to provide cardioprotection. The current study aimed to elucidate the interaction between estrogen and CD73 under chronic stress. Methods Ovariectomy and SHAM operations were done on FVB wild-type (WT) female mice. Two weeks after the operation, the mice were treated with daily isoproterenol (10 mg/kg/day) injections for 14 days. The effect of E2 on relevant cardiac injury biomarkers (BNP, ANP), myocardial morphology (cardiomyocyte surface area), electrocardiography, CD73 protein expression and activity, and macrophage (CD86 + and CD206 +) infiltrations were assessed. In vitro, H9C2 cells were treated with 1 nM of estrogen and 10 mM APCP (CD73 inhibitor α, β-methylene adenosine-5'-diphosphate), 10 µM isoproterenol and 20 µm LY294002 (PI3K inhibitor) for 24 h and western blot was done to elucidate the mechanism behind the effect of estrogen on the CD73/adenosine axis. Results Estrogen deficiency during chronic catecholamine stress caused myocardial injury, thereby triggering the hyperactivity of the CD73/adenosine axis, which aggravated myocarditis, adverse remodeling, and arrhythmias. However, estrogen normalizes CD73/Adenosine axis via the upregulation of PI3K/Akt pathways to prevent adverse outcomes during stress. In vivo results showed that the inhibition of PI3K significantly decreased PI3K/Akt pathways while upregulating the CD73/adenosine axis and apoptosis. Conclusion Estrogen’s pleiotropy cardioprotection mechanism during stress includes its normalization of the CD73/Adenosine axis via the PI3K/Akt pathway.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3