Photomodulation alleviates cellular senescence of aging adipose-derived stem cells

Author:

Zhang Tao,He Yuqian,Shu Xin,Ma Xiaoyu,Wu Jiaqi,Du Zuoqin,Xu Jin,Chen Ni,You Jingcan,Liu Yaofang,Li Tian,Wu Jianbo

Abstract

Abstract Background Mesenchymal stem cells (MSCs) therapies are emerging as a promising approach to therapeutic regeneration. Therapeutic persistence and reduced functional stem cells following cell delivery remain critical hurdles for clinical investigation due to the senescence of freshly isolated cells and extensive in-vitro passage. Methods Cultured adipose-derived stem cells (ASCs) were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet. We performed senescence-associated-β-galactosidase (SA-β-gal) staining, real-time PCR, and Westernblot to evaluate the levels related to cellular senescence markers. Results The mRNA expression levels of senescence markers were significantly increased in the later passage of ASCs. We show that light activation reduced the expression of senescent genes, and SA-β-Gal in all cells at passages. Moreover, the light-activated ASCs-derived exosomes decrease the expression of senescence, and SA-β-Gal in the later passage cells. We further investigated the photoreceptive effect of Opsin3 (Opn3) in light-activated ASCs. Deletion of Opn3 abolished the differences of light activation in reduced expression of senescent genes, increased Ca 2+ influx, and cAMP levels. Conclusions ASCs can undergo cellular senescence in-vitro passage. Photomodulation might be better preserved over senescence and Opn3-dependent activation in aged ASCs. Light-activated ASCs-derived exosomes could be served as e a new protective paradigm for cellular senescence in-vitro passage.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3