Suppression of peripheral NGF attenuates neuropathic pain induced by chronic constriction injury through the TAK1-MAPK/NF-κB signaling pathways

Author:

Dai Wen-Ling,Yan Bing,Bao Yi-Ni,Fan Ji-Fa,Liu Ji-Hua

Abstract

Abstract Background Anti-nerve growth factor (NGF) monoclonal antibodies (anti-NGF mAbs) have been reported to significantly attenuate pain, but the mechanism involved has not been fully elucidated, and the serious adverse events associated with mAbs seriously limit their clinical use. This study further investigated the mechanism by which peripheral NGF is involved in neuropathic pain and found safe, natural compounds that target NGF to attenuate neuropathic pain. Methods Nociception was assessed by the Von Frey hair and Hargreaves’ methods. Western-blotting, qPCR and immunofluorescence were used to detect the cell signaling pathway. RAW264.7 macrophages and RSC96 Schwann cells were cultured for in vitro evaluation. Results Intraplantar administration of anti-NGF mAbs suppressed the expression of phosphorylated transforming growth factor-β-activated kinase 1 (TAK1) in the dorsal root ganglion (DRG) and sciatic nerve. Intraplantar administration of a TAK1 inhibitor attenuated CCI-induced neuropathic pain and suppressed the expression of phosphorylated mitogen-activated protein kinases (MAPKs) in the DRG and sciatic nerve. Perisciatic nerve administration of levo-corydalmine (l-CDL) on the operated side obviously attenuated CCI-induced neuropathic pain and suppressed the expression of mNGF and proNGF. In addition, l-CDL-induced antinociception was reversed by intraplantar administration of NGF. Further results indicated that l-CDL-induced suppression of phosphorylated TAK1, MAPKs, and p65 and expression of the proinflammatory cytokines TNF-α and IL-1β in the DRG and sciatic nerve were all abolished by NGF. In addition, in vitro experiments indicated that l-CDL suppressed the secretion of NGF and proNGF in RAW264.7 macrophages and RSC96 Schwann cells, which was abolished by AP-1 and CREB agonists, respectively. Conclusions This study showed NGF inhibition suppressed TAK1 in the periphery to attenuate CCI-induced neuropathic pain through inhibition of downstream MAPK and p65 signaling. The natural compound l-CDL inhibited NGF secretion by macrophages and Schwann cells and downstream TAK1-MAPK/NF-κB signaling in the periphery to attenuate CCI-induced neuropathic pain. Graphical abstract Proposed mechanisms underlying the effect of l-CDL in periphery of CCI rats. In CCI rats, macropahages and Schwann cells could secret NGF to act on the receptors in the periphery to activate TAK1-MAPK/NF-κB axis and promote the release of proinflammatory cytokines, including TNF-α and IL-1β to promote neuropathic pain. l-CDL decreased the secretion of NGF through inhibiting AP-1 and CREB respectively in RAW264.7 and RSC96 Schwann cells to attenuate CCI-induced neuropathic pain by inhibiting the TAK1-p38 MAPK/NF-κB signaling pathway.

Funder

Young Scientists Fund

Double First Class University Plan

Postdoctoral Research Foundation of China

China Postdoctoral Special Funding program

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3