Synthesis, characterization and application of a zirconium-based MOF-808 functionalized with isonicotinic acid for fast and efficient solid phase extraction of uranium(VI) from wastewater prior to its spectrophotometric determination

Author:

Sharifi-Rad Marzieh,Kaykhaii Massoud,Khajeh Mostafa,Oveisi Alireza

Abstract

Abstract Background A zirconium-based metal-organic framework (Zr-MOF), named MOF-808, was synthesized and fully characterized by solvo-thermal method and functionalized by isonicotinic acid and employed as an efficient adsorbent for selective extraction and preconcentration of uranyl ions from water and waste water samples in a batch solid phase extraction. Results Parameters affecting extraction such as volume and pH of the sample solution, the amount of sorbent, type and volume of eluting solvent, and adsorption and desorption times were investigated and optimized. Under the optimized conditions, high extraction efficiency was observed with a limit of detection of 0.9 µg L− 1 for uranyl ions and relative standard deviations were found to be better than 2.1% in the range of 0.07–1000 µg L− 1. Conclusions These results indicated that the above procedure is fast, inexpensive, effective, reliable, applicable and organic solvent-free and showed the highly performance and stability of the Zr-MOF in SPE based analytical techniques.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3