Synthesis, crystal structures and docking studies of 2,7-diphenyl-1,4-diazepan-5-one derivatives

Author:

Velusamy Maheshwaran,Sreenivasan Sethuvasan,Kandasamy Ravichandran,Subbu Ponnuswamy,Paramasivam Sugumar,Mondikalipudur Nanjappagounder Ponnuswamy

Abstract

Abstract Background 1,4-Diazepine derivatives are the seven membered, nitrogen containing heterocyclic ring systems possessing a wide range of therapeutic applications. 1,4-Diazepines attracted the attention of chemists and druggists due to their biological and medicinal properties, such as antimicrobial, anti-HIV and anticancer activities. Herein, we report the preparation, crystal structure determined by X-ray crystallographic methods and docking of the molecules with the potential target protein NS5B RNA polymerase. Results The crystal structures and conformational studies of 1,4-diazepine [t-3, t-6-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one(DIAZ1)] and its nitroso derivative [t-3, t-6-dimethyl-1-nitroso-r-2,c-7-diphenyl-1,4-diazepan-5-one(DIAZ2)] are reported. The analyses of the molecules reveal that the seven membered diazepine ring systems adopt chair and boat conformations in compounds DIAZ1 & DIAZ2, respectively. In DIAZ2, the oxygen O2A is disordered over two positions with the refined occupancies of 0.792(7): 0.208(7) in the nitroso group. In both DIAZ1 & DIAZ2, the symmetry related molecules form a hetero/homo-dimer through N-H…O hydrogen bonds. Conclusion In this study, the crystal structures of two new 1,4-diazepines, namely t-3, t-6-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one and t-3, t-6-dimethyl-1-nitroso-r-2,c-7-diphenyl-1,4-diazepan-5-one were synthesized and characterized by X-ray crystallographic methods. The docking studies show that the compounds inhibit at the active site of the target protein and can be utilized as potential drug molecules. In both the compounds, N-H…O hydrogen bonds lead to dimer formation. In DIAZ2, additionally a couple of C-H…O interactions are noted between the molecules.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3