Determination of profenofos in seawater and foodstuff samples after its molecularly imprinted polymer pipette-tip micro solid phase extraction optimized by response surface methodology

Author:

Tamandani Mahsa,Hashemi Sayyed Hossein,Kaykhaii Massoud,Jamali Keikha Ahmad,Nasiriyan Ali

Abstract

Abstract Background In this research, a molecularly imprinted polymer (MIP) was synthesized and employed as a sorbent for pipette-tip micro solid phase extraction of profenofos insecticide in seawater, rice, and fish samples. The instrument employed for quantitation was spectrophotometry. Results Various factors affecting the microextraction protocol, including type and volume of the elution solvent, weight of MIP, pH and volume of sample solution, and number of cycles of loading and desorption were considered and optimized using one-factor-at-a-time, central composite design and Box-Behnken design. Factors optimized at: pH 4.0, amount of sorbent 2.5 mg, volume of methanol:acetic (9:1) acid as eluent 250 µL, both the number of extraction and elution cycles 5, and volume of sample 8.0 mL. At optimized conditions, an enrichment factor of 31 was achieved and the linearity range of the method was between 1.0 and 1000.0 µg/L. A good detection limit of 0.33 µg/L with a reproducibility better than 5.6% (as RSD) was observed. Conclusion The technique showed good analytical features for determination of profenofos in seawater, rice, and fish samples. Simplicity of operation of spectrophotometry and lack of using expensive HPLC grade solvents are other points of strengths of this method. The total analysis time was about 10 min, which is far less than techniques such as HPLC. Comparison between optimization with central composite design and Box–Behnken design showed better performance of the former.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3