Interaction of sulfasalazine with outer surface of boron-nitride nanotube as a drug carrier in aqueous solution: insights from quantum mechanics and Monte Carlo simulation

Author:

Ketabi Sepideh,Shalmashi Saba,Hallajian Sara

Abstract

AbstractThe improvement of the solubility of sulfasalazine in physiological media was the major aim of this study. Accordingly, BNNT inspected as a notable candidate for the carriage of this drug in aqueous media. For this purpose, four possible interactions of two tautomer of sulfasalazine with (9,0) boron-nitride nanotube were considered in aqueous media. The compounds were optimized in gas phase using density functional calculations. Solvation free energies and association free energies of the optimized structures were then studied by Monte Carlo simulation and perturbation method in water environment. Outcomes of quantum mechanical calculations presented that interaction of keto form of sulfasalazine produce the most stable complexes with boron-nitride nanotube in gas phase. Simulation results revealed that electrostatic interactions play a vital role in the intermolecular interaction energies after binding of drug and nanotube in aqueous solution. Results of association free energy calculations indicated that complexes of both two sulfasalazine tautomers (keto and enol) and nanotube were stable in solution. Computed solvation free energies in water showed that the interaction with boron-nitride nanotube significantly improved the solubility of sulfasalazine, which could improve its in vivo bioavailability.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3