Do clinical interview transcripts generated by speech recognition software improve clinical reasoning performance in mock patient encounters? A prospective observational study

Author:

Shikino Kiyoshi,Tsukamoto Tomoko,Noda Kazutaka,Ohira Yoshiyuki,Yokokawa Daiki,Hirose Yuta,Sato Eri,Mito Tsutomu,Ota Takahiro,Katsuyama Yota,Uehara Takanori,Ikusaka Masatomi

Abstract

Abstract Background To investigate whether speech recognition software for generating interview transcripts can provide more specific and precise feedback for evaluating medical interviews. Methods The effects of the two feedback methods on student performance in medical interviews were compared using a prospective observational trial. Seventy-nine medical students in a clinical clerkship were assigned to receive either speech-recognition feedback (n = 39; SRS feedback group) or voice-recording feedback (n = 40; IC recorder feedback group). All students’ medical interviewing skills during mock patient encounters were assessed twice, first using a mini-clinical evaluation exercise (mini-CEX) and then a checklist. Medical students then made the most appropriate diagnoses based on medical interviews. The diagnostic accuracy, mini-CEX, and checklist scores of the two groups were compared. Results According to the study results, the mean diagnostic accuracy rate (SRS feedback group:1st mock 51.3%, 2nd mock 89.7%; IC recorder feedback group, 57.5%–67.5%; F(1, 77) = 4.0; p = 0.049), mini-CEX scores for overall clinical competence (SRS feedback group: 1st mock 5.2 ± 1.1, 2nd mock 7.4 ± 0.9; IC recorder feedback group: 1st mock 5.6 ± 1.4, 2nd mock 6.1 ± 1.2; F(1, 77) = 35.7; p < 0.001), and checklist scores for clinical performance (SRS feedback group: 1st mock 12.2 ± 2.4, 2nd mock 16.1 ± 1.7; IC recorder feedback group: 1st mock 13.1 ± 2.5, 2nd mock 13.8 ± 2.6; F(1, 77) = 26.1; p < 0.001) were higher with speech recognition-based feedback. Conclusions Speech-recognition-based feedback leads to higher diagnostic accuracy rates and higher mini-CEX and checklist scores. Trial registration This study was registered in the Japan Registry of Clinical Trials on June 14, 2022. Due to our misunderstanding of the trial registration requirements, we registered the trial retrospectively. This study was registered in the Japan Registry of Clinical Trials on 7/7/2022 (Clinical trial registration number: jRCT1030220188).

Funder

This work was supported by the Japan Medical Education Foundation under Grant

Publisher

Springer Science and Business Media LLC

Subject

Education,General Medicine

Reference36 articles.

1. Gruppen LD, Woolliscroft JO, Wolf FM. The contribution of different components of the clinical encounter in generating and eliminating diagnostic hypotheses. Res Med Educ. 1988;27:242–7.

2. Peterson MC, Holbrook JH, Von Hales D, Smith NL, Staker LV. Contributions of the history, physical examination, and laboratory investigation in making medical diagnoses. West J Med. 1992;156:163–5.

3. Graber ML. Progress understanding diagnosis and diagnostic errors: thoughts at year 10. Diagnosis (Berl). 2020;7:151–9.

4. Keifenheim KE, Teufel M, Ip J, Speiser N, Leehr EJ, Zipfel S, et al. Teaching history taking to medical students: a systematic review. BMC Med Educ. 2015;15:159.

5. Maguire P. Can communication skills be taught? Br J Hosp Med. 1990;43:215–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3