Spatial-spectral hyperspectral image classification based on information measurement and CNN

Author:

Lin LianleiORCID,Chen Cailu,Xu Tiejun

Abstract

AbstractIn order to construct virtual land environment for virtual test, we propose a construction method of virtual land environment using multi-satellite remote sensing data, the key step of which is accurate recognition of ground object. In this paper, a method of ground object recognition based on hyperspectral image (HSI) was proposed, i.e., a HSI classification method based on information measure and convolutional neural networks (CNN) combined with spatial-spectral information. Firstly, the most important three spectra of the hyperspectral image was selected based on information measure. Specifically, the entropy and color-matching functions were applied to determine the candidate spectra sets from all the spectra of the hyperspectral image. Then three spectra with the largest amount of information were selected through the minimum mutual information. Through the above two steps, the dimensionality reduction for hyperspectral images was effectively achieved. Based on the three selected spectra, the CNN network input combined with the spatial-spectral information was designed. Two input strategies were designed: (1) The patch surrounding the pixel to be classified was directly intercepted from the grayscale images of the three selected spectra. (2) In order to highlight the effect of the spectrum of the pixel to be classified, all the spectral components of this pixel were superimposed on the patch obtained by the previous strategy. As a result, a new patch with more prominent spectral components of the pixel to be classified was obtained. Using the two public hyperspectral datasets, Salinas and Pavia Center, the experiments of on both parameter selection and classification performance were performed to verify that the proposed methods had better classification performance.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3