The phosphorylation status of eukaryotic elongation factor-2 indicates neural activity in the brain

Author:

Yoon Sang Ho,Song Woo Seok,Oh Sung Pyo,Kim Young Sook,Kim Myoung-HwanORCID

Abstract

AbstractAssessment of neural activity in the specific brain area is critical for understanding the circuit mechanisms underlying altered brain function and behaviors. A number of immediate early genes (IEGs) that are rapidly transcribed in neuronal cells in response to synaptic activity have been used as markers for neuronal activity. However, protein detection of IEGs requires translation, and the amount of newly synthesized gene product is usually insufficient to detect using western blotting, limiting their utility in western blot analysis of brain tissues for comparison of basal activity between control and genetically modified animals. Here, we show that the phosphorylation status of eukaryotic elongation factor-2 (eEF2) rapidly changes in response to synaptic and neural activities. Intraperitoneal injections of the GABA A receptor (GABAAR) antagonist picrotoxin and the glycine receptor antagonist brucine rapidly dephosphorylated eEF2. Conversely, potentiation of GABAARs or inhibition of AMPA receptors (AMPARs) induced rapid phosphorylation of eEF2 in both the hippocampus and forebrain of mice. Chemogenetic suppression of hippocampal principal neuron activity promoted eEF2 phosphorylation. Novel context exploration and acute restraint stress rapidly modified the phosphorylation status of hippocampal eEF2. Furthermore, the hippocampal eEF2 phosphorylation levels under basal conditions were reduced in mice exhibiting epilepsy and abnormally enhanced excitability in CA3 pyramidal neurons. Collectively, the results indicated that eEF2 phosphorylation status is sensitive to neural activity and the ratio of phosphorylated eEF2 to total eEF2 could be a molecular signature for estimating neural activity in a specific brain area.

Funder

national research foundation of korea

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3