mTORC1-mediated acquisition of reward-related representations by hippocampal somatostatin interneurons

Author:

Michon François-Xavier,Laplante Isabel,Bosson Anthony,Robitaille Richard,Lacaille Jean-ClaudeORCID

Abstract

AbstractPlasticity of principal cells and inhibitory interneurons underlies hippocampal memory. Bidirectional modulation of somatostatin cell mTORC1 activity, a crucial translational control mechanism in synaptic plasticity, causes parallel changes in hippocampal CA1 somatostatin interneuron (SOM-IN) long-term potentiation and hippocampus-dependent memory, indicating a key role in learning. However, SOM-IN activity changes and behavioral correlates during learning, and the role of mTORC1 in these processes, remain ill-defined. To address these questions, we used two-photon Ca2+ imaging from SOM-INs during a virtual reality goal-directed spatial memory task in head-fixed control mice (SOM-IRES-Cre mice) or in mice with conditional knockout of Rptor (SOM-Rptor-KO mice) to block mTORC1 activity in SOM-INs. We found that control mice learn the task, but SOM-Raptor-KO mice exhibit a deficit. Also, SOM-IN Ca2+ activity became increasingly related to reward during learning in control mice but not in SOM-Rptor-KO mice. Four types of SOM-IN activity patterns related to reward location were observed, “reward off sustained”, “reward off transient”, “reward on sustained” and “reward on transient”, and these responses showed reorganization after reward relocation in control but not SOM-Rptor-KO mice. Thus, SOM-INs develop mTORC1-dependent reward- related activity during learning. This coding may bi-directionally interact with pyramidal cells and other structures to represent and consolidate reward location.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3