Abstract
Abstract
Purpose
The co-pyrolysis of biomass and soluble phosphates generates biochar-based phosphate fertilizers (BBF), which may enhance phosphorus (P) input in soil and P uptake by plants. Conversely, pyrolysis of biomass impregnated with rock phosphate results in low P solubility and may not supplement plant requirement in short term. However, bacterial strains promoting rock phosphate solubilization increases P use efficiency and can be applied to BBFs.
Methods
An in vitro assay was conducted to investigate the solubilization profile of five bacterial strains (Pseudomonas sp.—UFPI-B5-8A, Burkholderia fungorum—UFLA 04-155, Acinetobacter sp.—UFLA 03-09, Paenebacillus kribbensis—UFLA 03-10, and Paenibacillus sp.—UFLA 03-116) isolated from common bean and cowpea nodules in a rock phosphate BBF. Additionally, a pot trial was carried out aiming to investigate the influence on maize growth by inoculation of three selected strains under a rock phosphate BBF fertilization.
Results
Inoculations with UFPI B5-8A, UFLA 04-155, and UFLA 03-09 were efficient in solubilizing P in vitro, being closely associated with pH decrease, likely due to the release of organic acids. As for the pot trial, the dose of 400 mg kg−1 of P in the BBF using UFPI B5-8A significantly increased maize shoot dry matter. All strains significantly enhanced P availability in the soil.
Conclusions
Bacterial inoculation in biochar-based rock phosphate aiming to improve its fertilizer value is an inexpensive and sustainable strategy to improve maize growth and enhance available P in soil and should be further explored.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献