A data-driven prioritisation framework to mitigate maintenance impact on passengers during metro line operation

Author:

Consilvio AliceORCID,Vignola Giulia,López Arévalo Paula,Gallo Federico,Borinato Marco,Crovetto Carlo

Abstract

AbstractThe application of artificial intelligence (AI) techniques may lead to significant improvements in different aspects of rail sector. Considering asset management and maintenance, AI can improve data analysis and asset status forecasting and decision-making processes, fostering predictive and prescriptive maintenance strategies. A prescriptive approach should be able to predict future scenarios as well as to suggest a course of actions. Nevertheless, the decision-making in rail asset management is often based on the classical asset-oriented approach, concentrating on the function of the asset itself as a main key performance indicator (KPI), whereas a user-oriented approach could lead to improved performance in terms of level of service. This paper is aimed at integrating the passengers’ perspective in the decision-making process for asset management to mitigate the impact that service interruptions may have on the final users. A data-driven prioritisation framework is developed to prioritise maintenance interventions taking into account asset status and criticality. In particular, a three-step approach is proposed, which focuses on the analysis of passenger data to evaluate the failure impact on the service, the analysis of alarms and anomalies to evaluate the asset status, and the suggestion of maintenance interventions. The proposed approach is applied to the maintenance of the metro line M5 in the Italian city of Milan. Results show the usefulness of the proposed approach to support infrastructure managers and maintenance operators in making decisions regarding the priority of maintenance activities, reducing the risk of critical failures and service interruptions.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Transportation,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3