Author:
Samarghandi Mohammad Reza,Zarrabi Mansur,sepehr Mohammad Noori,Amrane Abdeltif,Safari Gholam Hossein,Bashiri Saied
Abstract
Abstract
Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology,Environmental Engineering
Reference24 articles.
1. Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J: Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments. 2008, 77 (2): 327-334. 10.1016/j.dyepig.2007.01.026.
2. Jeni J, Kanmani S: Solar nanophotocatalytic decolorisation of reactive dyes using titanium dioxide. Iran J Environ Health Sci Eng. 2011, 8 (1): 15-24.
3. Shookohi R, Vatanpoor V, Zarrabi M, Vatani A: Adsorption of acid red 18 (AR18) by activated carbon from poplar wood: kinetic and equilibrium study. E J Chem. 2010, 7 (1): 65-72. 10.1155/2010/958073.
4. Ehrampoush MH, Moussavi GR, Ghaneian MT, Rahimi S, Ahmadian M: Removal of methylene blue dye from textile simulated sample using tubular reactor and tio2/uv-c photocatalytic process. Iran J Environ Health Sci Eng. 2011, 8 (1): 35-40.
5. Baocheng Q, Jiti Z, Xuemin X, Chunli Z, Hongxia Z, Xiaobai Z: Adsorption behavior of Azo Dye C. I. Acid Red 14 in aqueous solution on surface soils. J Environ Sci. 2008, 20 (6): 704-709. 10.1016/S1001-0742(08)62116-6.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献