COUPLED BOUNDARY ELEMENT-FINITE ELEMENT MODEL TO ESTIMATE HUMAN HEEL-PAD ELASTICITY MODULUS

Author:

Salimi Amirhossein1,Katouzian Hamid-Reza2,Naraghi-Bagherpour Paniz3,Khani Mohammad-Mehdi4

Affiliation:

1. Dynamical Systems and Control Lab, Department of Mechanical Engineering, University of Houston, Houston, TX, USA

2. Biomedical Faculty, Amirkabir University of Technology, Tehran, Iran

3. Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

4. School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

The key role of heel-pad in protecting calcaneus bone against excessive local stresses during walking and running is well discussed in the literature. Aiming to obtain a more profound understanding of this soft collagenous load-bearing tissue, material characterization of heel-pad has attracted the attention of many researchers. One way of achieving this goal is to estimate the mechanical properties of heel-pad based on Finite Element (FE) simulation of the indentation experiment which has been conducted by various teams before. During this process, the soft tissue undergoes a relatively large deformation causing the elements in FE Model to be extremely distorted particularly near the vicinity of indenter-heel pad contact making the numerical modeling tedious and significantly increasing the computational cost. The main contribution of the current study is to develop a coupled Boundary Element–Finite Element (BE–FE) plane strain model to improve the deficiency of the conventional numerical methods as the three-node 1 degree-of-freedom BEs eliminate the distortion issue near the deformed heel-pad zone and effectively lower the computational costs which is vital for iterative processes of this kind. Later through iterative post-processing of data, the modulus of elasticity (E) describing the elastic behavior of heel-pad is extracted. E is determined by using the inverse technique to minimize the displacement error between the experimental data and the corresponding numerical results after a considerable number of iterations. Obtained results contribute in design and construction of state-of-the-art prosthetic feet and therapeutic foot wear.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3