Affiliation:
1. Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan
Abstract
Nerve regeneration is a complex biological phenomenon. Once the nervous system is impaired, its recovery is difficult and malfunctions in other parts of the body may occur because mature neurons don't undergo cell division. To increase the prospects of axonal regeneration and functional recovery, researches have focused on designing “nerve guidance channels” or “nerve conduits”. For developing tissue engineered nerve conduits, four components come to mind, including a scaffold for axonal proliferation, supporting cells such as Schwann cells, growth factors, and extracelluar matrix. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the advanced technologies that are explored to fabricate nerve conduits. Furthermore, we also introduce a new method we developed to create longitudinally oriented channels within biodegradable polymers, Chitosan and PLGA, using a combined lyophilizing and wire-heating process. This innovative method using Ni-Cr wires as mandrels to create nerve guidance channels. The process is easy, straightforward, highly reproducible, and could easily be tailored to other polymer and solvent systems. These scaffolds could be useful for guided regeneration after transection injury in either the peripheral nerve or spinal cord.
Publisher
National Taiwan University
Subject
Biomedical Engineering,Bioengineering,Biophysics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献