Abstract
Niezawodność transportu lotniczego jest kluczowym aspektem w zwiększaniu zadowolenia pasażerów, łączności sieciowej, bezpieczeństwa, zrównoważenia środowiskowego i wydajności operacyjnej. W branży transportu lotniczego niezawodność krytycznych komponentów i systemów odgrywa ważną rolę w zapewnieniu bezpieczeństwa i wydajności systemów transportu lotniczego. Niniejszy artykuł analizuje integrację zaawansowanych metodologii, w tym łańcuchów Markowa, analizy średniego czasu między awariami (MTBF) i uczenia maszynowego, jako obiecujących sposobów poprawy niezawodności. Ponadto, niniejszy artykuł zawiera przegląd danych eksploatacyjnych, wgląd w przyszłe perspektywy i dyskusje na temat wyzwań, implikacji regulacyjnych i współpracy branżowej, co dodatkowo przyczynia się do kompleksowego zrozumienia zastosowania uczenia maszynowego i analizy MTBF w niezawodności transportu lotniczego. Różnorodne zastosowania i ewoluujące trendy w konserwacji predykcyjnej podkreślają jej znaczenie w kształtowaniu przyszłości praktyk konserwacyjnych w branży transportu lotniczego.
Publisher
Polish Air Force University